General Equilibrium with Unhedgeable Fundamentals and Heterogeneous Agents

Joint work with Paolo Guasoni

Stochastic Control & Financial Engineering
June 21, 2023
Motivation

- How do unhedgeable risk factors impact consumption decisions and asset pricing?
- Important sources of risk cannot be perfectly hedged.
- Most literature on general equilibria assumes dynamically complete markets.
- Market completeness guarantees the existence of a representative agent.
- Models in which the drivers of assets’ fundamentals are unhedgeable have so far eluded academic research.
What we do

- First closed-form expressions for the general equilibrium of a continuous-time market with unhedgeable risk factors and heterogeneous agents.

- Explicit expressions allow us to pin down the mechanism through which unhedgeable shock alter consumption decisions and trading strategies, and how asset prices react in equilibrium.

- **Methodology**: Small-noise asymptotics

- Unhedgeable risk factors have small volatility. Expansion around a complete model admitting a closed-form solution.
Market

- The dividend (or aggregate consumption) process D_t has dynamics
 \[
 dD_t = (\bar{\mu} + \varepsilon \sigma z_t)dt + \sigma_D dW^D_t, \\
 dz_t = -az_t dt + dW^\mu_t.
 \]

- W^μ, W^D independent Brownian motions.

- z_t fundamental variable. Parameter ε controls fluctuations’ size.
 For simplicity, z_t is a scalar. Extension with multiple factors is possible.

- $\varepsilon = 0$: baseline complete market.

- $\varepsilon > 0$: incomplete market. Fluctuations unhedgeable: one stock, two shocks.
Preferences

- n agents maximize lifetime utility from consumption.
- The i-th agent has absolute risk-aversion α_i and a time-preference rate β_i. Maximizes

$$E \left[\int_0^\infty e^{-\beta_i s} U_i(c_s) ds \right]$$

- Constant absolute risk aversion: $U_i(c) = \frac{e^{-\alpha_i c}}{-\alpha_i}$. CARA utilities needed to obtain explicit expressions.
- Agents are endowed with some initial wealth x_i.
- Agents finance consumption by:
 - Borrowing from and lending to each other
 - Earning dividends and trading the dividend-paying assets.
Budget Equation

- i-th agent’s holds θ^i_t shares of stock at time t. Consumes at rate c^i_t.
- Budget equation:

$$dX^i_t = \theta^i_t(dP_t + D_t\,dt) + r_t(X_t - \theta^i_t P_t)\,dt - c^i_t\,dt \quad X^i_0 = x_i$$

- Wealth X^i_t of i-th agent changes from
 - capital gains and losses $\theta^i_t \,dP_t$;
 - dividends $\theta^i_t D_t\,dt$;
 - interest income and charges $r_t(X_t - \theta^i_t P_t)\,dt$;
 - consumption $c^i_t\,dt$.

- Stock price P_t and interest rate r_t endogenous.
Second-Order Equilibrium

A second-order equilibrium is a family \(\{r_t(\varepsilon), P_t(\varepsilon), (\hat{c}^i_t(\varepsilon))_{1 \leq i \leq n}, (\hat{\theta}^i_t(\varepsilon))_{1 \leq i \leq n}\}_{0 \leq \varepsilon \leq \bar{\varepsilon}} \) such that

1. for every \(\varepsilon \), the market clearing conditions hold:
 \[
 \sum_{i=1}^{n} \theta^i_t = 1, \quad \sum_{i=1}^{n} (X^i_t - \theta^i_t P_t) = 0, \quad \sum_{i=1}^{n} \hat{c}^i_t = D_t \quad \text{a.s. for all } t > 0
 \]

2. for every \(\varepsilon \), agent \(i \)'s consumption is financed by their trading strategy.

3. for every agent \(i \), consumption is second-order optimal in \(\varepsilon \), i.e.,
 \[
 E \left[\int_0^\infty e^{-\beta_i t} U_i(\hat{c}^i_t) dt \right] \geq \sup_{(c_t, \theta_t) \in A} E \left[\int_0^\infty e^{-\beta_i t} U_i(c_t) dt \right] + o(\varepsilon^2).
 \]
Baseline Model

- When $\varepsilon = 0$, dividend growth rate is constant.
- Aggregate risk-aversion $\bar{\alpha} = 1 / \sum_{i=1}^{n} \frac{1}{\alpha_i}$; aggregate time-preference $\bar{\beta} = \sum_{i=1}^{n} \frac{\bar{\alpha}}{\alpha_i} \beta_i$.
- Exact equilibrium.

Theorem

Assume $\bar{\beta} + \bar{\alpha} \mu_D - \frac{\bar{\alpha}^2}{2} \sigma_D^2 > 0$. The pair (r, P_t) defined by

$$
r = \bar{\beta} + \bar{\alpha} \mu_D - \frac{\bar{\alpha}^2}{2} \sigma_D^2,
$$

$$
P_t = \frac{D_t}{r} + \frac{\mu_D - \bar{\alpha} \sigma_D^2}{r^2}
$$

is a market equilibrium, and the agents’ optimal policies are

$$
\hat{\theta}_t^i = \frac{\bar{\alpha}}{\alpha_i},
$$

$$
\hat{c}_t^i = \frac{\bar{\alpha}}{\alpha_i} D_t + \frac{\bar{\beta} - \beta_i}{\alpha_i} \left(t - \frac{1}{r} \right) + r \left(x_i - \frac{\bar{\alpha}}{\alpha_i} P_0 \right).
$$
Baseline Features

• Representative agent: same prices and rates as in equilibrium with one agent with preferences \((\bar{\alpha}, \bar{\beta})\).
• Markov Equilibrium: optimal policies and price dynamics depend only on \((t, D_t)\).
• No-trade Equilibrium: number of shares constant for all agents.
• Consumption affected by relative impatience and relative initial wealth.
Second-Order Equilibrium

Theorem

Assume \(\bar{\alpha} = \bar{\beta} + \bar{\alpha}\mu_D - \frac{\bar{\alpha}^2}{2}\sigma_D^2 > 0 \). A second-order equilibrium is given by

\[
r_t = \bar{r} + \varepsilon \bar{\alpha} \sigma_z Z_t - \frac{\varepsilon^2}{2} \sum_{j=1}^{n} \frac{\bar{\alpha}}{\alpha_j} (m_{t,j}^2,)^2,
\]

\[
P_t = D_t \tilde{C}_t + (\mu_D - \bar{\alpha}\sigma_D^2) \tilde{L}_t + \varepsilon \frac{1}{\bar{r}(a + \bar{r})}\sigma_z Z_t - \varepsilon^2 \frac{2\bar{\alpha}\sigma_Z^2}{\bar{r}(a + \bar{r})(2a + \bar{r})} \left(Z_t^2 + \frac{1}{\bar{r}} \right),
\]

\[
\hat{\theta}_t = \frac{\bar{\alpha}}{\alpha_i} + \varepsilon^2 \frac{\bar{r}^2}{\sigma_D^2} \frac{p m_{t,1}^i}{\alpha_i \bar{r}},
\]

\[
\hat{c}_i = \frac{\bar{\alpha}}{\alpha_i} D_t + \frac{1}{C_0^i} \left(x_i - \frac{\bar{\alpha}}{\alpha_i} P_0 \right) + \frac{\bar{\beta} - \beta_i}{\alpha_i} \left(t - \frac{L_0^i}{C_0^i} \right)
\]

\[
- \frac{\varepsilon}{\alpha_i} \int_0^t m_{s}^i dW_s^\mu - \frac{\varepsilon^2}{\alpha_i} \left(\int_0^t l_{s}^i ds + \int_0^t m_{s}^i dW_s^\mu + \int_0^t n_{s}^i dW_s^D \right) + \frac{1}{\alpha_i} \frac{K_0^i}{C_0^i},
\]

where the quantities \(m_{t,1}^i, p m_{t}^i, C_t, L_t, \tilde{C}_t, \tilde{L}_t, l_{t}^i, m_{t}^i, n_{t}^i, K_t \) can be expressed in closed form.
Consumption Plan

• Let C_i^t be the indifference prices (for agent i) of an annuity that pays 1 in perpetuity and L_i^t that of an annuity that pays s at time $s > t$.

• Consumption:

$$
\hat{c}_i^t = \frac{\bar{\alpha}}{\alpha_i} D_t + \frac{\bar{\beta} - \beta_i}{\alpha_i} \left(t - \frac{L_i^t}{C_i^t} \right) + \left(x_i - \frac{\bar{\alpha}}{\alpha_i} P_0 \right) \frac{1}{C_i^t} \\
-\varepsilon \frac{1}{\alpha_i} \int_0^t m_{s,i}^1 dW_s^\mu + \varepsilon^2 R_t,
$$

$$
\frac{m_{t,i}^1}{\alpha_i} = -\frac{\bar{\alpha}\sigma_z}{a + \bar{r}} \left(\frac{\bar{\beta} - \beta_i}{\alpha_i} \left(t + \frac{1}{a + \bar{r}} \right) + \left(x_i - \frac{\bar{\alpha}}{\alpha_i} P_0 \right) \bar{r} \right)
$$

• If annuities were tradeable, optimal consumption would be first three terms. The consumption plan in the complete market cannot be financed when the market is incomplete.
Mimicking Non-tradeable Assets

- Define $Q^i_t := \frac{\bar{\beta} - \beta^i_{\alpha}}{\alpha_i} \left(L^i_t - \frac{L^i_0}{C^i_0} C^i_t \right) + \frac{1}{C^i_0} \left(x^i_t - \frac{\bar{\alpha}}{\alpha_i} P^i_0 \right) C^i_t$. Q^i_t is the value of the “desired” position in long-term bonds.

- Agent i tries to replicate this position with the risk-free asset:

$$X^i_t - \hat{\theta}^i P_t = Q^i_t - \int_0^t \frac{d\langle Q^i, W^\mu \rangle_s}{ds} \, dW^\mu_s + O(\varepsilon^2).$$

- Interest-rate proceeds on excess lending are consumed:

$$\hat{c}^i_t = \hat{c}_t^{i,\text{comp}} - \bar{r} \int_0^t \frac{d\langle Q^i, W^\mu \rangle_s}{ds} \, dW^\mu_s + O(\varepsilon^2).$$

- Noisy tracking error in the replication leads to uncertainty in consumption.
Consumption: Information and Heterogeneity

- Consumption depends on the history of W^μ-shocks, as tracking errors cumulate. It is not Markov in the natural state variables (t, D_t, z_t).

- Agents who deviate most from the average (high $|\bar{\beta} - \beta_i|$, high $|\frac{\alpha_i}{\alpha_i} P_0 - x_i|$) have a stronger risk-sharing demand.

- These agents have a larger position in the risk-free asset, face more volatile tracking errors, and therefore higher consumption uncertainty.

- Heterogeneity matters.
Dynamic Trading

- Trading arises. $\hat{\theta}^i$ not constant.

$$
\hat{\theta}_t^i = \frac{\bar{\alpha}}{\alpha_i} + \epsilon^2 \frac{\bar{r}}{\sigma_D^2} \frac{\sigma_z}{\bar{r}(a + \bar{r})} \left(-\bar{\alpha}D_t - (\bar{\mu} - \bar{\alpha}\sigma_D^2) \left(\frac{1}{\bar{r}} + \frac{1}{a + \bar{r}} \right) \bar{\alpha} + 1 \right) \cdot \frac{m_t^{1,i}}{\alpha_i}
$$

- Why do agents trade? To hedge fundamental shocks in an incomplete market. Hedging strategies cannot account for all future contingencies and need updating.

- In the literature, agents trade because of overlapping generations, idiosyncratic labor income, noise traders. Features absent in this model.
Reward for Consumption Risk

The second order adjustment to consumption consists of three terms:

1) dW_t^μ-term, as at first order;

2) dividend shock dW_t^D-term, proportional to the number of shares $\hat{\theta}_i^t$ held at time t,

3) each agent wants a reward for additional consumption volatility ($m_t^{i,1}$):

$$
\frac{\varepsilon^2}{2\alpha_i} \int_0^t \left((m_s^{i,1})^2 - \sum_{j=1}^N \frac{\bar{\alpha}}{\alpha_j} (m_s^{j,1})^2 \right) ds
$$

- But not everyone can get it: sum must be zero.

- Instead, only atypical agents with *above-average* consumption volatility are rewarded.
Interest Rate - First Order

• Interest rate has expansion

\[r_t = \bar{\beta} + \bar{\alpha}(\bar{\mu} + \varepsilon \sigma_z z_t) - \frac{\bar{\alpha}^2}{2} \sigma_D^2 - \frac{\varepsilon^2}{2} \sum_{j=1}^{n} \frac{\bar{\alpha}}{\alpha_j} (m^{1,j}_t)^2, \]

\[m^{1,i}_t = -\frac{\bar{\alpha} \sigma_z}{a + \bar{r}} \left((\bar{\beta} - \beta_i) \left(t + \frac{1}{a + \bar{r}} \right) + \left(x_i - \frac{\bar{\alpha}}{\alpha_i} P_0 \right) \alpha_i \bar{r} \right) \]

• Growth rate of aggregate consumption is stochastic: \(\bar{\mu} + \varepsilon \sigma_z z_t. \)

• Procyclical interest rate. At first order, follows a Vasicek model (Zapatero, Goldstein (1996))
Interest Rate - Second Order

\[- \frac{\varepsilon^2}{2} \sum_{j=1}^{n} \frac{\bar{\alpha}}{\alpha_j} (m_t^{1,j})^2, \quad m_t^{1,i} = -\frac{\bar{\alpha} \sigma_z}{a + \bar{r}} \left((\bar{\beta} - \beta_i) \left(t + \frac{1}{a + \bar{r}} \right) + \left(x_i - \frac{\bar{\alpha}}{\alpha_i} P_0 \right) \alpha_i \bar{r} \right) \]

- Precautionary savings effect: \((m_t^{1,j})^2\) is proportional to the quadratic variation \(d\langle c_j \rangle_t\).
- Atypical agents face high consumption uncertainty. Heterogeneity reduces the interest rate.
- Autarchic endowments \((x_i = \frac{\bar{\alpha}}{\alpha_i} P_0)\) lead to a rate-decrease proportional to the cross-sectional variance of time-preference, weighted inversely to risk aversion:

\[\sum_{i=1}^{n} \frac{\bar{\alpha}}{\alpha_i} (\bar{\beta} - \beta_i)^2\]

- With homogeneous time-preference, rate-decrease proportional to

\[\sum_{i=1}^{n} \alpha_i \left(x_i - \frac{\bar{\alpha}}{\alpha_i} P_0 \right)^2\]

- The precautionary savings effect vanishes with homogeneous preferences and capital allocations.
At first order, the stock price is

\[P_t = D_t C_i^t + (\bar{\mu} - \bar{\alpha}\sigma_D^2)(L_t^i - tC_i^t) + \varepsilon \frac{1}{\bar{r}(a + \bar{r})}\sigma_z z_t + O(\varepsilon^2). \]

Good times \((z_t \text{ high})\) have twofold effect:
1. decrease prices by discount effect;
2. Increase prices by dividend growth.

Market incompleteness does not alter prices at first order.
Discounting Effect

- Adjustment to discounting affects stock prices.

- Heterogeneity increases stock prices, because it lowers the interest rate.

- The stock price is

\[
P_t = P_t^{\text{comp}} + \varepsilon^2 \cdot \left[D_t \left(\frac{1}{2} \sum_j \frac{\bar{\alpha}}{\alpha_j} M_t^{j, C} \right) + (\bar{\mu} - \bar{\alpha} \sigma_D^2) \left(\frac{1}{2} \sum_j \frac{\bar{\alpha}}{\alpha_j} M_t^{j, L} \right) \right],
\]

where \(M_t^{j, C} = \int_t^\infty e^{-\bar{\tau}(s-t)} \int_t^s (m_u^{j,1})^2 du ds \) and \(M_t^{j, L} = \int_t^\infty e^{-\bar{\tau}(s-t)} (s-t) \int_t^s (m_u^{j,1})^2 du ds \).
Shadow Price of Long-Term Bond

\[C_t^i = \frac{1}{\bar{r}} - \varepsilon \frac{\bar{\alpha}}{\bar{r}(a + \bar{r})} \sigma_z z_t + \varepsilon^2 \left[\frac{\bar{\alpha}^2 \sigma_z^2}{\bar{r}(a + \bar{r})(2a + \bar{r})} \left(z_t^2 + \frac{1}{\bar{r}} \right) + \frac{1}{2} \sum_{j=1}^{N} \frac{\bar{\alpha}}{\alpha_j} M_t^{j,C} - \bar{\alpha} \frac{\sigma_z}{a} \int_t^\infty \frac{ae^{-r(u-t)}}{r(a + r)} m_u^{j,1} du \right], \]

where \(M_t^{j,C} = \int_t^\infty e^{-\bar{r}(s-t)} \int_t^s (m_u^{j,1})^2 du ds. \)

- First three terms, convexity effect:
 price of the bond if the market were complete.

- Fourth term, effect of agents’ heterogeneity.

- Fifth term, agent-specific.
 From the individual marginal utility from the bond’s cash flow.
 Lenders value bond more.
Heuristic Derivation

- Marginal utility of i-th agent:
 \[e^{-\beta_i t - \alpha_i \hat{c}_i^i} = y_i M_t^i \]

- Stochastic discount factor for $\varepsilon = 0$ is $M_t = e^{-\bar{\beta} t - \bar{\alpha} (D_t - D_0)}$.

- Set $M_t^i = e^{-\bar{\beta} t - \bar{\alpha} (D_t - D_0) + Y_t^i}$, where $\lim_{\varepsilon \downarrow 0} Y_t^i = 0$
 \[\frac{1}{\alpha_i} \left(-\bar{\beta} t - \bar{\alpha} (D_t - D_0) + Y_t^i \right) = -\frac{\beta_i}{\alpha_i} t - \hat{c}_t^i - \frac{1}{\alpha_i} \log y_i, \]

- Summing over agents, $\sum_i \frac{1}{\alpha_i} Y_t^i = - \sum_i \frac{1}{\alpha_i} \log y_i - D_0$ and, hence,
 \[\sum_i \frac{1}{\alpha_i} dY_t^i = 0. \]

- Assume $Y_t^i = \varepsilon Y_t^{i,1} + o(\varepsilon)$, where
 \[dY_t^{i,1} = I_t^{i,1} dt + m_t^{i,1} dW_t^\mu + n_t^{i,1} dW_t^D. \]
Agreement on Traded Assets

- Interest rate is the negative growth rate of M_t^i:

$$r_t = \bar{\beta} + \bar{\alpha} (\bar{\mu} + \epsilon \sigma z_t) - \frac{1}{2} \bar{\alpha}^2 \sigma_D^2 - \frac{1}{2} \epsilon^2 (m_t^{i,1})^2 - \frac{1}{2} \epsilon^2 (n_t^{i,1})^2 + \epsilon \bar{\alpha} \sigma_D n_t^{i,1}.$$

- Ensuring that it is independent of i implies $-l_t^{i,1} + \bar{\alpha} \sigma_D n_t^{i,1} = g_t$.

- Since $0 = \sum_i \frac{1}{\bar{\alpha}_i} (-l_t^{i,1} + \bar{\alpha} \sigma_D n_t^{i,1}) = \frac{g_t}{\bar{\alpha}}$,

$$-l_t^{i,1} + \bar{\alpha} \sigma_D n_t^{i,1} = 0.$$

- Similar argument on the stock price leads to $n_t^{i,1} = 0$. Hence,

$$l_t^{i,1} = n_t^{i,1} = 0.$$

- How to identify $m_t^{i,1}$?
Replicability of Consumption Stream

- Consumption stream from first-order condition:

$$\hat{c}_t^i = \frac{\bar{\alpha}}{\alpha_i} (D_t - D_0) + \frac{\bar{\beta} - \beta_i}{\alpha_i} t - \frac{1}{\alpha_i} \log y_i - \frac{1}{\alpha_i} Y_t^i$$

- Price both sides and set:

$$L_t^i = E_t \left[\int_t^\infty s \frac{M_t^i}{M_i} ds \right],$$
$$C_t^i = E_t \left[\int_t^\infty \frac{M_t^i}{M_i} ds \right],$$
$$K_t^i = E_t \left[\int_t^\infty Y_t^i \frac{M_t^i}{M_i} ds \right].$$

$$X_t^i = \frac{\bar{\alpha}}{\alpha_i} P_t + \frac{\bar{\beta} - \beta_i}{\alpha_i} L_t^i - \frac{\bar{\alpha}}{\alpha_i} D_0 C_t^i - \frac{1}{\alpha_i} (\log y_i) C_t^i - \frac{1}{\alpha_i} K_t^i.$$

- Must satisfy budget equation

$$dX_t^i = \theta_t^i (dP_t + D_t dt) + r_t (X_t^i - \theta_t^i P_t) dt - c_t^i dt$$

- Matching diffusion coefficients of X_t^i from both equations yields expressions for $m_t^{i,1}$ and $\theta_t^{i,1}$.
Conclusion

• Closed-form general equilibrium with unhedgeable fundamental shocks and heterogeneous preferences.

• Perturbation around complete baseline measure.

• Uncover effects proportional to unhedegable shock size and its variance.

• Preference heterogeneity affects consumption and prices, dynamic trading, consumption premium.
Thank You!
Multiple Assets

- Model extends to several stocks:

\[dD_t = (\bar{\mu} + \varepsilon \sigma z_t) dt + \sigma_D dW^D_t, \]

\[dz_t = -az_t dt + \rho dW^D_t + \sqrt{1 + \rho^2} d\tilde{W}_t^\mu. \]

where \(W^D \) and \(W^\mu \) are \(k \)-dimensional independent Brownian Motions, and \(\sigma z, A \in \mathbb{R}^{k \times k} \).

- Define \(S_t^i := E_t \left[\int_t^\infty e^{-\int_s^t r_u du} D^i_s ds \right] \) and \(R_t^i := S_t^i - P_t^i \).

- Let the market beta of the \(i \)-th asset be \(\text{Beta}_i := \frac{d\langle P^i, P^m \rangle_t}{d\langle P^m \rangle_t} \), where \(P^m_t = \sum_{i=1}^n P_t^i \).
Multiple Assets

- Cross-sectional asset pricing implication: At the first order,

\[R^i = \beta^i R^m + \bar{\alpha} \left(\frac{1^T \sigma_D \rho}{\bar{r}^2(a + \bar{r})} \right) \left(D^i_t - \beta^i(1^T D_t) \right) \left(\frac{\sigma z^i}{1^T \sigma z} - \beta^i \right) - \frac{2a + 3\bar{r}}{\bar{r}(a + \bar{r})} \bar{\alpha} (\mu^i - \beta^i(1^T \mu)) \].

- \(\beta^i \) is the market beta of the i-th asset. CAPM holds if \(\rho = 0 \). Deviations otherwise.
- Fixed value effect from relative growth \(\mu^i - \beta^i(1^T \mu) \).
- Relative dividend \(D^i_t - \beta^i(1^T D_t) \) produces size effect. No low-dimensional factor models.
First-Order Equilibrium – Definition

Definition

A first-order equilibrium is a family \(\{ r_t(\varepsilon), P_t(\varepsilon), (\hat{c}^i_t(\varepsilon))_{1 \leq i \leq n}, (\hat{\theta}^i_t(\varepsilon))_{1 \leq i \leq n} \}_{0 \leq \varepsilon \leq \bar{\varepsilon}} \) such that (henceforth, unless ambiguity arises, the dependence on \(\varepsilon \) is omitted)

1. \(P_t(\varepsilon)_{0 \leq \varepsilon \leq \bar{\varepsilon}} \) is a continuous semimartingale and \(r_t(\varepsilon)_{0 \leq \varepsilon \leq \bar{\varepsilon}} \) an adapted, integrable process;

2. \(\{ \hat{c}^i_t, \hat{\theta}^i_t \}_{0 \leq \varepsilon \leq \bar{\varepsilon}} \) is admissible for all \(1 \leq i \leq n \);

3. For every \(\varepsilon \) the market clearing conditions hold:

\[
\sum_{i=1}^{n} \hat{\theta}^i_t = 1, \quad \sum_{i=1}^{n} (X^i_t - \hat{\theta}^i_t P_t) = 0, \quad \sum_{i=1}^{n} \hat{c}^i_t = D_t;
\]

4. For every agent \(i \), the family of strategies \(\{ \hat{c}^i_t, \hat{\theta}^i_t \}_{0 \leq \varepsilon \leq \bar{\varepsilon}} \) is first-order optimal in \(\varepsilon \), i.e.,

\[
E \left[\int_0^\infty \frac{1}{1 - \alpha_i} e^{-\beta_i t - \alpha_i \hat{c}^i_t} dt \right] \geq \sup_{(c_t, \theta_t) \in A} E \left[\int_0^\infty \frac{1}{1 - \alpha_i} e^{-\beta_i t - \alpha_i c_t} dt \right] + o(\varepsilon).
\]
Admissible Strategy

Definition

Let $P_t(\varepsilon)$ be a continuous semimartingale and $r_t(\varepsilon)$ an adapted, integrable process, for all $\varepsilon \in (0, \bar{\varepsilon})$. A family $\{c_t(\varepsilon), \theta_t(\varepsilon)\}_{0 \leq t < \infty}$ is an admissible strategy if

1. $(c_t(\varepsilon), \theta_t(\varepsilon))$ is a pair of adapted processes for all $\varepsilon \in (0, \bar{\varepsilon})$.
2. There exists $\delta > 0$ independent of ε such that for any $\varepsilon \in (0, \bar{\varepsilon})$ and any T the process $\theta_t(\varepsilon)$ is $(2 + \delta)$-integrable on $[0, T] \times \Omega$.
3. The process $c_t(\varepsilon)$ is bounded from below uniformly in ε, i.e., for some polynomial functions q_1, q_2 independent of ε, $c_t(\varepsilon) \geq q_1(t, D_t) + \int_0^t q_2(s, D_s)dW_s^D$.
4. For every $\varepsilon \in (0, \bar{\varepsilon})$ the budget equation

$$dX_t(\varepsilon) = \theta_t(\varepsilon)(dP(\varepsilon) + D_t dt) + r_t(\varepsilon)(X_t(\varepsilon) - \theta_t(\varepsilon)P_t(\varepsilon))dt - c_t(\varepsilon)dt,$$ $X_0(\varepsilon) = x_i$,

has a strong solution $X_t(\varepsilon)$ that is bounded from below uniformly in ε, i.e., for some polynomials p_1, p_2, p_3 independent of ε, $X_t(\varepsilon) \geq p_1(t, z_t, D_t) + \int_0^t p_2(s, z_s, D_s)dW_s^D + \int_0^t p_3(s, z_s, D_s)dW_s^\mu$, and is $(2 + \delta)$-integrable on $[0, T] \times \Omega$ for some $\delta > 0$ independent of ε and any T.