MF-OMO: An Optimization Formulation of Mean-Field Games

Xin Guo
UC Berkeley and Amazon
xinguo@berkeley.edu

Joint work with Anran Hu (U. of Oxford) and Junzi Zhang (Citedal)

Stochastic Control and Financial Engineering

Princeton University, June 20, 2023
Motivating Examples and Challenges

MF-OMO: MFGs as Occupation Measure Optimization

Solving MF-OMO: Convergence to NE solutions

Numerics
Outline

Motivating Examples and Challenges

MF-OMO: MFGs as Occupation Measure Optimization

Solving MF-OMO: Convergence to NE solutions

Numerics
Motivating example: a sequential auction game

Example: Bid recommendation in sequential ad auction

search query \Rightarrow (hybrid) auction

Characteristics:

- A large number of almost identical advertisers (over 1MM)
- Multiple stakeholders of possibly conflicting interests: Amazon/Google/Meta vs advertisers, vs consumers
- Coexistence of competition and collaboration

1 Figure source: https://mwmstudioz.com/facebook-ad-auction/
Motivating example: rideshare

- A large number of drivers
- Multiple stakeholders of possibly conflicting interests: Uber, Lyft vs drivers, vs passengers
- Coexistence of competition and collaboration

Figure source: https://360.here.com/2014/04/30/jams-game-theory-equations-science-of-traffic/
Multi-level multi-agent problems

Many problems, including online advertising and healthcare
- multi-agent games with large number of agents
- multiple stakeholders involved with possibly conflicting goals
- coexistence of competition and collaborations
First technical challenge: large population

Resolution: scale down the interaction to the weak form

▶ mean-field approximation

⇒ a single representative agent’s interaction with the empirical distribution of a large homogeneous population
Main challenge: characterizing NEs

- existence of multiple NEs
- interplay between PO and NEs: optimization problem for the central planner with the constraint of NEs

Remark: different parties may have conflicting interests, and followers may not follow the leader, unlike the principle-agent problems
Extended/Generalized MFG

- Considers a representative agent with state s_t, action a_t, and solves

 \[
 \text{maximize}_{\pi} \quad \mathbb{E} \left[\sum_{t=0}^{T} r_t(s_t, a_t, L_t) | s_0 \sim \mu_0 \right] \\
 \text{subject to} \quad s_{t+1} \sim P_t(s_t, a_t, L_t), \quad a_t \sim \pi_t(\cdot | s_t), \quad t = 0, \ldots, T - 1
 \]

- Finite-time-horizon $\mathcal{T} = \{0, 1, \ldots, T\}$
- Finite state and action spaces S and A
- Population state-action joint distribution $L_t \in \Delta(S \times A)$
- Reward and transition probability r_t, P_t
- Mixed policy/Relaxed control: $\pi_t : S \rightarrow \Delta(A)$
Nash equilibrium of MFG

A pair \((\pi, L)\) is called a Nash equilibrium (NE) for the MFG if it satisfies

Optimal \(\pi\) given \(L\) (best response/optimality))

\[
\begin{align*}
\text{maximize}_{\pi} \quad & \mathbb{E}\left[\sum_{t=0}^{T} r_t(s_t, a_t, L_t) | s_0 \sim \mu_0 \right] \\
\text{subject to} \quad & s_{t+1} \sim P_t(s_t, a_t, L_t), \quad a_t \sim \pi_t(\cdot | s_t), \quad t = 0, \ldots, T - 1
\end{align*}
\]

Consistent \(L\) given \(\pi\) (Fokker-Planck (consistency))

\[
\begin{align*}
L_0(s, a) &= \mu_0(s) \pi_0(a | s), \\
L_{t+1}(s', a') &= \pi_{t+1}(a' | s') \sum_{s \in S} \sum_{a \in A} L_t(s, a) P_t(s' | s, a, L_t), \quad \forall t = 0, \ldots, T - 1
\end{align*}
\]
Existence of Nash equilibrium of MFG

Proposition

Suppose that $P_t(s'|s, a, L_t)$ and $r_t(s, a, L_t)$ are both continuous in L_t for any $s, s' \in S$, $a \in A$ and $t \in T$. Then a Nash equilibrium solution exists. Moreover, this Nash equilibrium solution is an ϵ-Nash equilibrium to the original N-player game.

▶ How to find some or all Nash equilibria?
Solution approaches for continuous-time MFGs

- PDE/control approach: backward HJB equation + forward Kolmogorov equation
 \textit{Lions and Lasry} (2007), \textit{Huang, Malhame and Caines} (2006), \textit{Lions, Lasry and Guánt} (2009),

- Probabilistic approach: FBSDEs
 \textit{Buckdahn, Li and Peng} (2009), \textit{Carmona and Delarue} (2013)

- Master equation (and verification argument)
 Cardaliaguet, Delarue, Lasry, and Lions (2019)
Basic idea of existing approaches:

Given \(L = \{L_t\}_{t=0}^T \), finding the optimal control/best response is an MDP (or RL), denoted as \(\mathcal{M}(L) \).

- **Alternate** between representative agent and population mean-field
 - Step 1: given \(L \) (and optionally \(\pi \)), use \(\mathcal{M}(L) \) to get an updated control/policy \(\pi' \)
 - Step 2: given \(\pi' \), update from \(L \) for one time step to get \(L' \) following the dynamics
 - Step 3: Check whether \(L' \) matches \(L \), and repeat
Some existing computation algorithms

- **GMF-Q (Guo, H., Xu & Zhang (2019))**
 - $Q^{k+1} = Q^*_L$
 - $\pi^{k+1} = \text{softmax}_{c_{k+1}}(Q^{k+1})$
 - $L^{k+1} = \text{MeanFieldUpdate}(\pi^{k+1})$

- **Ficticious Play (Perrin et al. (2020))**
 - $\pi^{k+1} \in \text{BestResponse}(\tilde{L}^k)$
 - $L^{k+1} = \text{MeanFieldUpdate}(\pi^{k+1})$
 - $\tilde{L}^{k+1} = \alpha_{k+1}\tilde{L}^k + (1 - \alpha_{k+1})L^{k+1}$ (e.g., $\alpha_{k+1} = \frac{k}{k+1}$)

- **Online Mirror Descent (Perolat et al. (2021))**
 - $Q^{k+1} = Q^\pi_L$, $\bar{Q}^{k+1} = \bar{Q}^k + \alpha Q^{k+1}$
 - $\pi^{k+1} = \text{softmax}_{c}(\bar{Q}^k)$
 - $L^{k+1} = \text{MeanFieldUpdate}(\pi^{k+1})$
Existing assumptions

- **Contractivity**: Mapping from L to L' in Best Response algorithm is contractive

- **Monotonicity**: For any $L, L' \in \Delta(S \times A)$,

 $$\sum_{s \in S} \sum_{a \in A} (L(s, a) - L'(s, a))(r(s, a, L) - r(s, a, L')) \leq 0.$$

 - Elie et al. (2019), Perrin et al. (2020), Lee, Rengarajan, Kalathil & Shakkottai (2020), Perolat et al. (2021), Geist et al. (2021), Perrin et al. (2021)

- **Uniqueness of Nash equilibrium**
Remarks

- Assumptions needed to find Nash equilibrium are stronger than the assumptions for the existence of Nash equilibrium
- Contractive or monotonicity conditions generally do not hold for games
- Most games have more than one Nash equilibrium

Our focus: finding multiple NEs of MFGs?
Outline

Motivating Examples and Challenges

MF-OMO: MFGs as Occupation Measure Optimization

Solving MF-OMO: Convergence to NE solutions

Numerics
Focus on an MDP \mathcal{M} (e.g., $\mathcal{M}(L)$)

- **Occupation measures:** a sequence $\{d_t\}_{t \in T} \subseteq \Delta(S \times A)$

 - $d_t(s, a) = \mathbb{P}^{\mu_0, \pi}(s_t = s, a_t = a)$

- Define the set-valued mapping Π which maps from a sequence $\{d_t\}_{t \in T}$ to a set of policy/control sequences $\{\pi_t\}_{t \in T}$:

 $$\pi_t(a|s) = \frac{d_t(s, a)}{\sum_{a' \in A} d_t(s, a')} \quad (*)$$

 when $\sum_{a' \in A} d_t(s, a') > 0$, and $\pi_t(\cdot|s)$ is an arbitrary probability vector in $\Delta(A)$ when $\sum_{a' \in A} d_t(s, a') = 0$
Lemma (Guo, H. & Zhang (2022))

\(\{\pi_t\}_{t \in T} \) is an \(\epsilon \)-suboptimal policy/control of the MDP \(\mathcal{M} \) if and only if \(d_t(s, a) = \mu_t(s)\pi_t(a|s) \) is a feasible \(\epsilon \)-suboptimal solution to the following linear program:

\[
\begin{align*}
& \text{maximize} \quad \sum_{t \in T} \sum_{s \in S} \sum_{a \in A} d_t(s, a) r_t(s, a) \\
& \text{subject to} \quad \sum_{s \in S} \sum_{a \in A} d_t(s, a) P_t(s'|s, a) = \sum_{a \in A} d_{t+1}(s', a), \forall s' \in S, t \in T \setminus \{T\}, \\
& \quad \sum_{a \in A} d_0(s, a) = \mu_0(s), \quad \forall s \in S, \\
& \quad d_t(s, a) \geq 0, \quad \forall s \in S, a \in A, t \in T.
\end{align*}
\]
LP formulation of MDPs/stochastic controls/MFGs

Discrete-time models:
- MDPs with finite state-action spaces: Manne (1960)

Continuous-time modes:
- Semi-MDPs: Osaki and Mine (1968)
- Controlled martingale problems: Stockbridge (1990), Bhatt and Borkar (1996), Kurtz and Stockbridge (1998)
- Singular controls: Taksar (1997), Kurtz and Stockbridge (2001)
- Optimal stopping in MFGs: Bouveret, Dumitrescu and Tankov (2020), Dumitrescu, Leutscher and Tankov (2021, 2022)
Second component: duality and consistency

(A) Optimal control/Best response: \(d = \{d_t(s, a)\}_{t \in T} \) solves the following linear program

\[
\begin{align*}
\text{maximize}_x & \quad \sum_{t \in T} \sum_{s \in S} \sum_{a \in A} x_t(s, a) r_t(s, a, L_t) \\
\text{subject to} & \quad \sum_{s \in S} \sum_{a \in A} x_t(s, a) P_t(s'|s, a, L_t) = \sum_{a \in A} x_{t+1}(s', a), \quad \forall s' \in S, t \in T \setminus \{T\}, \\
& \quad \sum_{a \in A} x_0(s, a) = \mu_0(s), \quad \forall s \in S, \\
& \quad x_t(s, a) \geq 0, \quad \forall s \in S, a \in A, t \in T
\end{align*}
\]

(B) Consistency of population flow:

\[
L_0(s, a) = \mu_0(s) \pi_0(a|s), \quad L_{t+1}(s', a') = \pi_{t+1}(a'|s') \sum_{s \in S} \sum_{a \in A} L_t(s, a) P_t(s'|s, a, L_t), \quad \forall t = 0, \ldots, T - 1,
\]

where \(\pi \in \Pi(d) \)
Duality and optimality

Key observation 1: The LP in Condition A can be written as the following

\[
\begin{align*}
\text{minimize} & \quad c_L^\top d \\
\text{subject to} & \quad A_L d = b, \quad d \geq 0.
\end{align*}
\]

Here matrix \(A_L \) is defined by transition probabilities \(P \), vector \(c_L \) is defined by the reward functions \(r \) and vector \(b \) is defined by the initial distribution \(\mu_0 \).
More precisely, \(b = [0, \ldots, 0, \mu_0] \in \mathbb{R}^{ST+S} \),

\[
 c_L = [-r_0(\cdot, \cdot, L_0), \ldots, -r_T(\cdot, \cdot, L_T)] \in \mathbb{R}^{SA(T+1)},
\]

\[
 A_L = \begin{bmatrix}
 W_0(L_0) & -Z & 0 & 0 & \cdots & 0 & 0 \\
 0 & W_1(L_1) & -Z & 0 & \cdots & 0 & 0 \\
 0 & 0 & W_2(L_2) & -Z & \cdots & 0 & 0 \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & 0 & \cdots & W_{T-1}(L_{T-1}) & -Z \\
 Z & 0 & 0 & 0 & \cdots & 0 & 0
 \end{bmatrix}.
\]

Here \(W_t(L_t) \in \mathbb{R}^{S \times SA} \) is the matrix with the \(l \)-th row \((l = 1, \ldots, S)\) being the flattened vector \(A^t(P_t(l|\cdot, L_t)) \in \mathbb{R}^{SA} \), and \(Z := [I_S, \ldots, I_S] \in \mathbb{R}^{S \times SA} \).
Strong duality

The following conditions are equivalent:

▶ Optimal control/Best response condition: d^* solves

\[
\begin{align*}
\text{minimize}_{d} & \quad c_L^T d \\
\text{subject to} & \quad A_L d = b, \quad d \geq 0
\end{align*}
\]

▶ There exist y, z such that

\[
\begin{align*}
A_L d^* & = b, \quad A_L^T y + z = c_L, \\
z^T d^* & = 0, \quad d^* \geq 0, \quad z \geq 0
\end{align*}
\]
Key observation 2: Given \(d = \{d_t(s, a)\}_{t \in T} \) satisfies condition A, condition B can be reduced to the following condition

\[(B') \quad d_t(s, a) = L_t(s, a), \quad \forall s \in S, a \in A, t \in T\]

Interpretation: single agent occupation measure = population mean field
Mean Field Occupation Measure Optimization: MFOMO

Theorem (Guo, H. & Zhang (2022))

Solving a Nash equilibrium of the mean-field game problem is equivalent to solving the following feasibility optimization problem.

\[
\begin{align*}
\text{minimize}_{y, z, L} & \quad 0 \\
\text{subject to} & \quad A_L L = b, \quad A_L^T y + z = c_L, \\
& \quad z^T L = 0, \quad L \geq 0, \quad z \geq 0.
\end{align*}
\]

If \((\pi, L)\) is an NE of the mean-field game, then there exist some \(y, z\) such that \((y, z, L)\) is a feasible solution to the above optimization problem; Conversely, if \((y, z, L)\) is a feasible solution to the above optimization problem, then \((\pi, L)\) is an NE of the mean-field game, with \(\forall \pi \in \Pi(L)\) by (*)

- \(y\) is the value function; \(z\) is the Bellman residual
- In fact, there is indeed no loss to restrict \(y\) and \(z\) to be bounded and interpretable.
Extending NE to exploitability

Exploitability measures the closeness of a policy to NE:

- **Expl(π)** quantifies the gain for a representative player to replace its policy/control by a best response/optimal control, while the rest of the population plays with policy π
- **Fact**: Expl(π) ≥ 0 and Expl(π) = 0 if and only if π is an NE
- **Expl(π) ≤ ε** characterizes ε-NE
MF-OMO: final product

- Solving (MF-OMO) exactly is equivalent to solving for NE
- To find an ϵ-NE, it is sufficient to approximately solve MF-OMO to $O(\epsilon^2)$ sub-optimality

\[
\begin{align*}
\text{minimize}_{y,z,L} & \quad \|A_L L - b\|_2^2 + \|A_L^T y + z - c_L\|_2^2 + z^T L \\
\text{subject to} & \quad L \geq 0, \quad 1^T L = 1, \\
& \quad 1^T z \leq SA(T^2 + T + 2)r_{\text{max}}, \quad z \geq 0, \\
& \quad \|y\|_2 \leq \frac{S(T+1)(T+2)}{2}r_{\text{max}}. \\
\end{align*}
\]

(MF-OMO)
Outline

Motivating Examples and Challenges

MF-OMO: MFGs as Occupation Measure Optimization

Solving MF-OMO: Convergence to NE solutions

Numerics
Optimization variable: $\theta := (y, z, L)$.

Projected gradient descent:

$\theta_{k+1} = \text{Proj}(\theta_k - \eta_k \nabla_{\theta} f_{\text{MF-OMO}}(\theta_k))$.

Theorem (Guo, H. & Zhang (2022))

Under some regularity assumption, projected gradient descent algorithm can solve (MFOMO) with local convergence guarantee.
Solving MF-OMO: convergence to NE solutions

Consider a special class of MFGs:

- r_t is linear in L_t: $r_t(s, a, L_t) = \bar{r}_{s,a,t} + b_{t,s,a}^\top \bar{R}_{t,s,a}
- P_t$ is independent of L_t: $P_t(s'|s, a, L_t) = \bar{P}_{s',s,a,t}

Finding NE solution(s) of this class of MFGs is equivalent to solving a linear complementarity problem

$$\begin{align*}
\text{minimize}_{y,z,L} & \quad 0 \\
\text{subject to} & \quad \begin{bmatrix}
0 & A_L \\
A_L^\top & -B
\end{bmatrix}
\begin{bmatrix}
y \\
L
\end{bmatrix}
+ \begin{bmatrix}
0 \\
z
\end{bmatrix}
= \begin{bmatrix}
b \\
\bar{c}
\end{bmatrix}, \\
z^\top L = 0, & \quad L \geq 0, & \quad z \geq 0,
\end{align*}$$

which can be reduced to solving a finite number of linear programs.

Proposition (Guo, H. & Zhang (2022))

Suppose that the MFG has linear rewards and mean-field independent dynamics. Then its NE solution can be found in finite time.
Motivating Examples and Challenges

MF-OMO: MFGs as Occupation Measure Optimization

Solving MF-OMO: Convergence to NE solutions

Numerics
SIS: comparison of algorithms

- Large/infinite number of agents choose to either social distance or to go out at each time step
- Susceptible agents get infected when going out, with probability proportional to the number of infected agents; otherwise agents stay healthy
- Infected agents recover with some probability at each step
- Agents aim at finding the best strategy to minimize their costs induced from social distancing and being infected
Figure: Convergence against iterations
Figure: Convergence against runtime
Consider an MFG with at least three known NEs

- δ is the initialization neighborhood around each NE

- With random initializations around the δ neighborhood of NE i, we record the proportion of convergence to $1\text{e}-2$ and $1\text{e}-3$ normalized exploitability under 400 iterations.

<table>
<thead>
<tr>
<th>δ</th>
<th>NE 1 ($1\text{e}-2$, $1\text{e}-3$)</th>
<th>NE 2 ($1\text{e}-2$, $1\text{e}-3$)</th>
<th>NE 3 ($1\text{e}-2$, $1\text{e}-3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>100% 100%</td>
<td>100% 95%</td>
<td>100% 100%</td>
</tr>
<tr>
<td>0.2</td>
<td>100% 100%</td>
<td>100% 95%</td>
<td>100% 95%</td>
</tr>
<tr>
<td>0.8</td>
<td>100% 95%</td>
<td>100% 95%</td>
<td>100% 100%</td>
</tr>
<tr>
<td>1.0</td>
<td>100% 100%</td>
<td>100% 100%</td>
<td>100% 100%</td>
</tr>
</tbody>
</table>

Table: Convergence behavior of different tolerances
With randomly sampled from the δ neighborhood of NE i, we record the proportion of convergence to some NE under 400 iterations.

p_i is the proportion of convergence closest to NE i.

<table>
<thead>
<tr>
<th>δ</th>
<th>NE 1</th>
<th>NE 2</th>
<th>NE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p_1</td>
<td>$p_2 + p_3$</td>
<td>p_2</td>
</tr>
<tr>
<td>0.05</td>
<td>70%</td>
<td>30%</td>
<td>75%</td>
</tr>
<tr>
<td>0.2</td>
<td>50%</td>
<td>50%</td>
<td>65%</td>
</tr>
<tr>
<td>0.8</td>
<td>45%</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td>1.0</td>
<td>40%</td>
<td>60%</td>
<td>45%</td>
</tr>
</tbody>
</table>

Table: Convergence behavior of different initializations: Tolerance 1e-3
Extension

This reformulation of NE sets as feasibility of LP has been generalized to analyze multi-level multi-agent systems, including

- generalization to ergodic, infinite-time horizon and more general forms of MFGs
- stability and sensitivity issues for Stackelberg mean field games (G., Hu, and Zhang (2022))
- balancing social optimality and NE for bid recommendation systems (G., Li, Nabi, Salhab, Zhang (2023))
- continuous time-state spaces (on going)

MF-OMO: An Optimization Formulation of Mean-Field Games
arxiv.org/abs/2206.09608
MFGLib: an open-source Python library for MFGs.

- **Environments:**
 - Pre-implmented envs
 - Off-the-shelf interface for user-defined envs

- **Solvers:**
 - MFOMO, OnlineMirrorDescent, PriorDescent, FictitiousPlay
 - Embedded auto-tuning tool to automatically select the best algorithm hyperparameters

Available at https://github.com/radar-research-lab/MFGLib.

Comments and suggestions are welcome!
Thank you!
Definability

Assumption

For any $s \in S, a \in A$, $P_t(s, a, L_t)$ and $r_t(s, a, L_t)$ (as functions of L_t) are both restrictions of definable functions on the log-exp structure to $\Delta(S \times A)$.

The precise definition of definability and the log-exp structure can be found in Attouch, Bolte, Redont & Soubeyran (2010), Section 4.3.

Examples:

- All semi-algebraic functions, all analytic functions on compact sets as well as the exponential and logarithm functions are definable.

- Any finite combination of definable functions via summation, subtraction, product, affine mapping, composition, (generalized) inversion, partial supremum and partial infimum, as well as reciprocal (restricted to a compact domain) inside their domain of definitions are definable.